Search results for "Graph isomorphism"
showing 5 items of 5 documents
Pattern Matching and Pattern Discovery Algorithms for Protein Topologies
2001
We describe algorithms for pattern-matching and pattern-learning in TOPS diagrams (formal descriptions of protein topologies). These problems can be reduced to checking for subgraph isomorphism and finding maximal common subgraphs in a restricted class of ordered graphs. We have developed a subgraph isomorphism algorithm for ordered graphs, which performs well on the given set of data. The maximal common subgraph problem then is solved by repeated subgraph extension and checking for isomorphisms. Despite its apparent inefficiency, this approach yields an algorithm with time complexity proportional to the number of graphs in the input set and is still practical on the given set of data. As a…
A Polynomial Quantum Query Lower Bound for the Set Equality Problem
2004
The set equality problem is to tell whether two sets A and B are equal or disjoint under the promise that one of these is the case. This problem is related to the Graph Isomorphism problem. It was an open problem to find any ω(1) query lower bound when sets A and B are given by quantum oracles. We will show that any error-bounded quantum query algorithm that solves the set equality problem must evaluate oracles \(\Omega(\sqrt[5]{\frac{n}{\ln n}})\) times, where n=|A|=|B|.
Symmetry-assisted adversaries for quantum state generation
2011
We introduce a new quantum adversary method to prove lower bounds on the query complexity of the quantum state generation problem. This problem encompasses both, the computation of partial or total functions and the preparation of target quantum states. There has been hope for quite some time that quantum state generation might be a route to tackle the $backslash$sc Graph Isomorphism problem. We show that for the related problem of $backslash$sc Index Erasure our method leads to a lower bound of $backslash Omega(backslash sqrt N)$ which matches an upper bound obtained via reduction to quantum search on $N$ elements. This closes an open problem first raised by Shi [FOCS'02]. Our approach is …
About Graph Mappings
2019
Summary In this articles adjacency-preserving mappings from a graph to another are formalized in the Mizar system [7], [2]. The generality of the approach seems to be largely unpreceeded in the literature to the best of the author’s knowledge. However, the most important property defined in the article is that of two graphs being isomorphic, which has been extensively studied. Another graph decorator is introduced as well.
About Vertex Mappings
2019
Summary In [6] partial graph mappings were formalized in the Mizar system [3]. Such mappings map some vertices and edges of a graph to another while preserving adjacency. While this general approach is appropriate for the general form of (multidi)graphs as introduced in [7], a more specialized version for graphs without parallel edges seems convenient. As such, partial vertex mappings preserving adjacency between the mapped verticed are formalized here.